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INTRODUCTION — TIMBER MANAGEMENT
Timber managers face a myriad of questions in planning a
stand from regeneration to final harvest. Two of the most
basic questions center around rotation length and stand
density. These two questions are appropriate whether the
objective is fiber or financial maximization. To answer these
questions, foresters must pull out the “crystal ball” and
make predictions, using some form of growth and yield
model to estimate future stand characteristics (total
volume, diameter distribution, species composition). If
financial maximization is desired, then foresters must also
attempt to predict future economic conditions such as the
cost of capital, inflation, future stumpage prices, and the
costs of harvesting. These data are important for making
decisions about sustainable forest-wide management
decisions as well as good stand-level decisions. For the
forest cover types in the central United States, this usually
involves planning and prediction of forest and financial
conditions on a time frame from 25 to 100 years.

Two approaches have been applied in an effort to provide
forest managers with some guidelines for decision making
about rotation length and stand density. The first and oldest
technique is field testing. Representative sites are selected
and management alternatives are actually implemented
and the physical results are measured and reported. The
second approach has grown in use since the advent of
powerful, low-cost computers. Computer simulation of a
forest stand is based upon the use of growth and yield
models and this is coupled with economics to provide
estimations of future outputs.

The following discussion will compare these two
approaches and then provide a detailed description and
one example of an implementation of dynamic

programming which represents one technique for computer
simulation of forest stands. One overall assumption will be
that the problem under consideration is an even-aged
stand, although all techniques are equally applicable to
uneven-aged stand structures. 

TWO APPROACHES — COMPUTER
SIMULATION AND FIELD TESTING

Necessary Resources for Each Method
Actual field testing of silvicultural regimes requires access
to representative sites and the ability to actually implement
and then observe the results of management actions.
Considerable financial, personnel and equipment resources
are needed. This method also requires time for the stand to
respond to the management actions and for repeated
monitoring of stand parameters. It is assumed that
environmental conditions (site, climate) will be typical of the
region to which the study applies.

Computer simulation, on the other hand, requires good
data on initial stand conditions as a starting point for the
simulation. These initial conditions may be a selection of
actual representative sites or a hypothetical composite
site that is considered typical of the region. Growth and
yield models that are responsive to the range of actions
and stand conditions simulated are necessary. For
example, the TWIGS individual-tree growth simulator for
the Central United States (Miner and others 1988) was
developed from a data base that poorly represented
yellow-poplar, Eastern redcedar, and tupelo/gum.
Therefore, this growth simulation would not be an optimal
choice for computer simulation of these species in the
Central United States. Also, whole stand models such as
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yield tables are unable to accurately predict how a stand
might grow if the diameter distribution is altered from
thinnings from above or below. Predicting future tree
quality is also very difficult with whole stand models.
Furthermore, computer simulations will need estimates of
future financial conditions. Data or additional models that
predict stumpage prices, the cost of capital (interest
rates), and the cost of harvesting operations must be
included.

Strengths and Weaknesses of Each Approach
Table 1 is a list of some major strengths and weaknesses
of each approach. Field-based studies have several
advantages. They do not rely upon predictions of growth
and yield or economic conditions. It is difficult to argue
with observed results when properly replicated. However,
it should be noted that even observed economic results,
when applied in planning future rotations, assume that the
future will be the same as the past. The alternatives for
management that are chosen can be put into practice with
relative ease. Due to the great length of time required and
the costs related to acquiring the sites and managing
them, field-based studies are expensive. Sensitivity
analysis is also difficult and type and number of
alternatives is usually kept very low so that adequate
replication can be achieved.

Computer simulation, on the other hand, can test a great
number of alternatives and combinations. Due to the
speed and power of modern personal computers,
simulations can test millions of combinations in hours
rather than decades and at a far lower cost. However,
long-term projections with growth and yield models may be
substantially in error (Rauscher and others 1997) and at
best might be considered only relatively correct. Another
subtle, but important problem with computer simulation is
“artifacts.” An artifact represents a difference in a result
that is not likely to be observed in the real world. For
example, Beck and Della-Bianca developed yield
equations for unthinned (1970) and thinned (1975) yellow-
poplar stands. The two equations are disjoint at any single
given age. When these two models are used together in a
computer simulation, when a stand is thinned, it
immediately shows a slight increase in volume at the

same age! This directs the simulation to thin at an early
age to capture this “free” volume which, in reality, does not
exist. Another form of an artifact may occur from rounding
of values in a simulation. For example, it may be possible
to test the sensitivity of thinning in basal area increments
of one square foot or less, but would the results be
practicable in the real world?

The remainder of this paper presents the basics of one
computer simulation technique, dynamic programming
(DP). A non-mathematical description of DP will be
presented, followed by a mathematical formulation and
then a description of a DP-based computer program
(NESTER). The results of published research on field-
based studies of yellow-poplar will be compared to some
NESTER results.

OPTIMIZATION USING DYNAMIC
PROGRAMMING
Dynamic programming is a computational method that
takes large sequential problems and breaks them down
into solvable, related subproblems which can be linked
together to achieve an optimal solution to the entire
problem. Let’s think about a 20-year-old even-aged
hardwood stand. Let us further assume that management
operations will occur only once every 10 years, and that
the alternatives available are, to do nothing, thin 20
percent or 40 percent of the volume, or clear fell the entire
stand (regeneration harvest). Figure 1 shows a diagram
with a node or state representing our 20-year-old stand.
The state is described by the total cubic foot volume per
acre, in this case 700 ft3/acre. Over the 10 years, this
stand will grow 700 ft3/acre and will have a total of 1400
ft3/acre. If we do nothing, the stand remains at 1400
ft3/acre. If we thin, the stand volume will be reduced to
either 1120 ft3/acre (20 percent thinning) or 840 ft3/acre
(40 percent thinning). If we clear fell the stand it has no
residual volume. From one state in the initial stage (age
20), we now have four possible states in the first stage.
Figure 2 shows a partial diagram of the progression into
the second stage. Note that two paths compete for the
state described by 1600 ft3/acre. As each stage continues,
we will have more states in the decision space and as that
happens, it is more likely that two or more paths will
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Table 1—Strengths (+) and weaknesses (–) of field-based studies and computer simulations

Field-based Computer Simulation

+ Long term growth and yield valid – Long term problems with growth and
+ Economic data is observed, not predicted yield models
+ Alternatives selected are relatively easy to – Long term economic assumptions

put into practice can be invalid
– Costly to implement – Model may reflect artifacts based on
– Difficult to test large numbers of alternatives structure of model

and combinations/intensities + Inexpensive to test
– Long time for study completion + Excellent sensitivity analysis

+ Fast results



compete for a given state. The underlying assumption in
dynamic programming is that any two or more paths that
compete for the same state represent an identical forest
condition with the same future value growth potential. If we
assume that it doesn’t matter how we achieve 1600
ft3/acre in a 30-year-old stand, this assumption holds true.
This is called the principle of optimality (Dykstra 1984). It
is also called the memoryless principle and it means that
an optimal path through the network of all possible states
can be solved one stage at a time.

More formally, the subproblems are often referred to as
stages, and within each stage are multiple states. A
recursive relationship links the stages together. This
recursive relationship contains a method for choosing
optimal states within a stage and for linking optimal stage
policies together into an optimal problem solution. To do
so, certain information must be stored at each state. This
includes 1) a link to a state in an adjacent stage, 2) the
objective function value for reaching this particular state,
and finally, 3) information necessary to describe the state
and make a decision regarding options for moving it to
the next adjacent state and determining its value relative
to the objective function (Figure 3). The formal
mathematics for dynamic programming are provided in
the next section.

Dynamic Programming Formulated
Mathematically
The objective function shown in equation one relates the
value of N management decisions, ƒN*(YN), which yield a
stand described by YN (a regeneration harvest in even-
aged stands). A management decision is defined by the
variable Tn.

(1)

Equation two relates the current state of a stand in stage n
to a state in the next stage n+1 (Yn → Yn+1) by taking the
current stand condition (Yn) and adding the next current
growth (Gn+1(Yn)) and subtracting out any intermediate
harvests (Tn+1).

(2)

Equation three simply relates the volume of a stand after it
has grown (Xn) to its final volume in stage n (Yn) by
showing the difference as the amount of volume harvested
(Tn).
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Figure 1—Initial condition and stage one states for forward-recursive dynamic programming
network.
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Figure 2—Stages one and two of a dynamic programming network.

Figure 3—Competition for nodes in the DP network and tracing the optimal path.



(3)

Equation four assures that the final stand condition is a
clearcut. If uneven-aged management is applied, then a
different ending condition, one with a residual volume, is
defined.

(4)

Equation five is the recursive relationship that links each
stage together. The function rn(Xn,Tn) is the return
generated at stage n from decision Tn taken on stand
described by Xn. The function r can maximize any
quantifiable criteria but is usually a maximum volume or
value function.

(5)

The variables are defined again for the reader:

ƒN*(YN) = objective function value of N management
decisions yielding a stand described by YN. In the final
stage, N, YN is a clear cut stand.

rnTn = return generated at stage n by decision Tn.

Xn = state vector describing stand at stage n after it grows
from state Yn-1.

Yn = state vector describing stand at stage n.

Tn = management decision taken at stage n.

Gn+1(Yn) = growth of stand at stage n to stage n+1. Along
with Tn, this constitutes the transformation function.

rn(Xn,Tn) = return generated at stage n from decision Tn
taken on stand described by Xn.

Some Comments About Dynamic
Programming
A single variable such as total volume is usually insufficient
to adequately describe a stand. Two stands, both having a
total volume of 1000 ft3/acre may have very different
average diameters and thus different future growth and
value potential. Therefore, two or more state variables are
used to define a stand condition within a stage. However,
this leads to another problem known as the curse of
dimensionality (Arthaud 1986). State variables used to
describe forest stands are usually continuous. If the
variables cubic volume per acre and number of trees per
acre are used to define states within a stage and it is
assumed that the maximum volume is 5000 ft3/acre and
the maximum number of trees is 500/acre, then the DP
program must be able to represent 2.5 million states per
stage (assuming that all volumes and trees per acre are
rounded to the nearest integer). If yet another state
variable is added, the memory requirements are likely to
exceed the primary memory capacity of most University
mainframe computers. To effectively use continuous
variables and to reduce the size of the solution network,
the idea of state neighborhoods (Brodie and Kao 1979)

was introduced. For example, state neighborhoods of ± 5
trees per acre and ± 5 ft3/acre would reduce the two state
memory requirements from 2.5 million to 100,000 states
per stage. Figure 2 demonstrates an example of state
neighborhoods. If the neighborhood interval was 100
ft3/acre, then the paths leading to 1280 ft3/acre and 1200
ft3/acre would compete for the same node in the network.
The key in using state neighborhoods is making sure that
your intervals are not so large as to violate the principle of
optimality (Pelkki 1997).

AN EXAMPLE OF DP AND FIELD TESTING -
YELLOW POPLAR MANAGEMENT

Description of NESTER
Nester (NEighborhood STate EvaluatoR) is a forward
recursive dynamic programming computer program for
Windows-based personal computers (Pelkki 1997). It
utilizes the GROW subroutine (Brand 1981) from the
TWIGS individual-tree growth projection system (Miner and
others 1988). NESTER allows the user to choose any
combination of six state variables (cubic foot volume per
acre, number of trees per acre, average diameter, basal
area per acre, number of thinnings, and average tree grade
per acre). Stage intervals can be as short as one year or
as long as 30 years. As NESTER utilizes an individual-tree
growth model, stumpage prices must be provided for each
species group included in the stand. NESTER can be used
to model mixed species stands, however, at the present
time, there are no thinning algorithms that select by
species. NESTER does project tree grade using the
method presented by Yaussy (1993). Also, because of the
individual-tree growth model, NESTER can simulate many
types of thinning operations, including mechanical thinning,
thinning from above, thinning from below, and thinnings
based on tree quality (improvement thinning and high-
grading). NESTER can simulate constant, real price
increases, or stochastic price changes independently for
sawtimber and other roundwood size classes.

NESTER Studies on Yellow Poplar
Two studies have been published to date using NESTER to
study yellow-poplar (Pelkki and Arthaud 1998, Pelkki
1999). One study focused upon changing markets and
prices and their effects on yellow-poplar management, the
other examined changing thinning strategies and the
impact on financial returns from yellow- poplar. The results
of these studies indicate the strength of dynamic
programming for sensitivity analysis and the overall
findings of these papers will be compared to published
results of field studies reported in Beck and Della-Bianca
(1981). The complete results of those studies are not
included here. This paper merely highlights some of the
new information obtained through computer simulations
and identifies some areas where additional field-based
work is needed.

Input Data for NESTER
Initial stand conditions were derived from published
diameter distributions (McGee and Della-Bianca 1967,
Knoebel and others 1986) for 20-year-old, average-
stocked, yellow-poplar stands with site indices of 90, 110,
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and 130 ft at 50 years. Potential grade distributions (Hanks
1976) representing low, average, and high stem quality
classes were defined using U.S. Forest Service Forest
Inventory and Analysis data for yellow-poplar in the region.
Thus, nine different combinations of site index and stem
quality distribution served as starting points for the DP
simulations.

Stumpage prices were obtained from regional price reports
and from Timber Mart South (1994). Capital costs were
generally set at 4 percent. Sensitivity to real price
increases and higher and lower costs of capital were
investigated.

NESTER runs were completed using two states, number of
trees per acre and cubic foot volume per acre, with the
state neighborhoods of 10 trees per acre and 10 ft3 per
acre, respectively. The stage interval was set at 2 years,
but additional runs were investigated using different stage
intervals. All thinning options but mechanical thinning were
simulated (thinning from above, thinning from below,
thinning from above and below, high-grading, and
improvement thinning) at intensities ranging from 10
percent to 50 percent of the initial basal area in 5 percent
increments. Thus, from each state, 47 options were
simulated. The state network represented 46n+1 states
(where n = stage). The initial stage was age 20, and each
stage increased by two year increments. Therefore, stage
11 (age = 42) represented 4611+1 possible ways to manage
a stand from age 20 to age 42.

Comparing Results of NESTER-Based
Studies to Previous Work
When thinning yellow-poplar stands, Beck and Della
Bianca (1981) note that cultural work in sapling and pole-
sized stands is very costly and there are few markets for
this material. When thinnings are done, Beck and Della-
Bianca (1981) recommend thinnings from below to
concentrate the value on larger, high-value stems. They
also noted that intermediate yellow-poplar trees would
respond to thinning from above. In a recently completed
DP study, Pelkki (1999) found that improvement thinnings,
while earning negative to very low initial returns (-$5.1 to
$31.5 per acre) were commonly part of the optimal financial
stand regime. These improvement thinnings removed first
large trees of low quality, then very small trees, and finally
low to higher grade factory sawtimber grade trees until a
basal area target was reached. In this manner, the trees
with the most valuable future growth potential were
retained.

In stands with high-quality stem distributions, the DP-based
studies (Pelkki and Arthaud 1998, Pelkki 1999) included
thinnings that removed 40-50 percent of the basal area.
Furthermore, some of the optimal financial regimes
included 4-6 thinnings (not all at the 40-50 percent intensity
level). Beck and Della-Bianca (1981) report considerable
leeway in manipulating yellow-poplar stocking levels to
achieve diameter growth and quality goals without
sacrificing volume production. However, the frequency and
intensity of the DP-based harvest may initiate advance

regeneration which would increase the final harvest and
site regeneration costs.

In studies reported in Beck and Della-Bianca (1981), first
thinnings are recommended as early as 15-20 years and
can be repeated every 5-15 years over the rotation. The
DP-based studies (Pelkki and Arthaud 1998, Pelkki 1999)
have an initial stand state that is 20 years of age and so
cannot simulate thinnings before the age of 22 years (1st
stage). However, in the DP-studies, most initial thinnings
occurred between the ages of 22 and 28 years. Multiple
thinnings in the DP-based studies ranged from 2-12 years
apart with most being 4-10 years apart.

In regimes with multiple thinnings, Beck and Della-Bianca
(1981) recommend that later thinnings be lighter because
basal area growth response in older stands is lower. The
DP-studies (Pelkki and Arthaud 1998, Pelkki 1999) had
heavier later thinnings, possibly due to the financial, rather
than volume objectives of the simulation. Both Beck and
Della-Bianca (1981) and the DP-based studies (Pelkki and
Arthaud 1998, Pelkki 1999) found that intense thinnings
shortened the rotation.

While not explicitly discussed in Beck and Della-Bianca
(1981), the yield tables suggest an optimal rotation of 50-70
years for fiber production. The DP-based studies (Pelkki and
Arthaud 1998, Pelkki 1999) found maximum financial returns
with rotations as short as 32 years or as long as 66 years.
Factors contributing to shorter rotations were a good market
for pulpwood, OSB, and other fiber-based products, high
interest rates, and higher site indices. Factors contributing to
longer rotation lengths were high stem quality distributions,
lower interest rates, and higher sawtimber prices (or an
absence of sub-sawtimber markets). These factors favored
longer, sawtimber-focused rotations.

For yellow-poplar management, the DP-based studies
uncover three major issues that need additional research in
a field-based setting. First and foremost, can improvement
thinnings, based on potential tree grading bring the
economic returns projected by the computer simulations?
Additional studies have shown (Pelkki and Ringe 1998)
that the earlier a valid potential tree grade can be applied,
the greater the economic returns. Secondly, are harvest
costs in poletimber stands prohibitive? The DP-simulations
assume a fixed entry cost on all thinnings and a 15 percent
thinning penalty on all stumpage prices (to reflect the
added cost of thinning over a final harvest). They also
charge harvest costs for pre-merchantable stems at the
rate of 10 percent of the merchantable price (if the stems
were of merchantable size). Studies by Kluender and
others (1996) suggest that harvest cost of small diameter
stems are greater than proportional to volume in southern
pine stands. With the increase in markets for hardwood
pulpwood throughout the central Appalachian region,
thinning and site preparation cost studies would appear
necessary. Finally, the DP-based simulations suggest that
multiple thinning regimes with 4-6 entries prior to final
harvest may optimize financial returns in some yellow-
poplar stands. Some field-based tests of such regimes
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would answer questions related to problems in stand
integrity and advance regeneration treatment costs.

SUMMARY - WHY BOTH APPROACHES ARE
NEEDED
Unquestionably, both field-based and simulation-based
approaches are necessary for forest researchers in the
future. Field-based studies provide on-the-ground
confirmation of new practices and working methods for field
application. They cannot, however, respond quickly to new
markets or changing economic conditions. While computer
simulations can perform thorough sensitivity analyses to
many variables, they lack the real world operational
constraints that are often too complex to model and may
even be unanticipated by the researcher. Computer
simulations are best left to exploratory research with their
results confirmed by field-based studies which can then
lead to changes in actual management practices.
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Abstract— Recent advances in GPS satellite survey,
geographic information systems, and a portable electronic
distance measurement device are useful new tools which,
when combined with classical tree measurement, timber
volume calculation, statistical inventory procedures, provide
a pathway for generating highly accurate digital timber
stand information for effective forest management decision
makings.  This presentation describes the methods and
procedures used in the design of an intensive timber
inventory conducted in  a mountainous forest watershed.

In this prototype study, GPS, laser ranging, and GIS
techniques are used to replace traditional forest inventory
tools such as chains, compasses, altimeters, and optical
forks. GPS land navigation technique is employed to locate
inventory plot centers and a differential GPS point
positioning technique is used to permanently determine
surveying plot locations.  A laser ranging instrument, called
Criterion, is used to measurement upper-stem diameters
and subsequently to determine merchantable lengths of
commercial  trees.  Georeferenced timber survey data and
computer generated environment data such as slope and
aspect maps are stored in a geographic information system
for subsequent analyses.   

The inventory uses a traditional systematic line-plot design
to tally timbers in an  eastern hardwood forest situated on

the western slope of the Appalachian mountain.   Using
Criterion’s laser ranging capability, plot trees are identified
by measuring the distance between plot and tree centers.
For a plot tree, its dbhob is measured by a caliper and its
merchantable length is measured by the criterion.  The
Criterion’s diameter and height measurement functions
allow foresters to accurately determine the position of a
prescribed upper-stem diameter and the measure the
vertical distance  between two points on tree stems. The
digital display feature provided by this instrument
eliminates the need to interpret analogous scales on
conventional tree measurement and portable surveying
equipment. Tree measurement data are subsequently
inputted into a personal computer for the computations of
both board-foot and cubic-foot saw-timber volumes.   All
these measurements exceed functional accuracies
specified for intended forest inventory work.

Using statistic estimation methods, plot data are expanded
to provide interval estimates of timber stocking on a per
acre basis or for the entire forest stand.  In addition, all
inventory data are entered into a GIS framework which
contains environmental data such as aspect and slope
maps.  The GIS is used to store, display, and query of
timber stands information for effective forest management
decision makings.



Abstract— A Java based software package provides a user
with Internet access the ability to store, summarize, and
translate field collected data describing forest stands and to
run simulations to assess possible future scenarios that
include stand management and the effects of gypsy moth
defoliation. The model interface is constructed as a Java
applet that will run within a Java-compliant Internet world-
wide-web browser, allowing a user from any computer that
has Internet and web access to use these tools. The model
user also has the ability to access data from a large
collection of example stands that are available from a
server-side database. If the user has a locally available

Java Virtual Machine (JVM), then it is possible to use a
Java application version of these software programs that
permits the local storage, access, and management of
input and output data files generated through use of the
program. Data from field plots entered through the user
interface are summarized on a per acre basis and from
these data, the user can directly obtain estimates of
stocking, volume, and value, as well as stand structure and
related habitat data summaries. Simulations permit the
user to look at potential growth scenarios under
hypothesized management actions.
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INTRODUCTION
Missing observations are common in “real world” data sets.
In forestry, there are many instances in which a diameter
for a previous period is required but not available. The
impetus for this study was a problem encountered by the
Forest Service’s Forest Inventory and Analysis (FIA) units
which are required to produce periodic tables showing net
volume change from the previous inventory as well as the
components of change: ingrowth (I), survivor growth (S),
mortality (M), and cut (C). Equation (1) expresses net
change as the sum of these components: 

V2 – V1 = I + S – M – C (1)

where:

V1 = volume at time period 1;

V2 = volume at time period 2.

Martin (1982) defined six possible categories of trees
encountered on remeasured point samples. The first four,
ingrowth, survivor, mortality, and cut trees were measured
at the first inventory. The remaining categories, ongrowth
and nongrowth trees, were alive and included only in the
second inventory. Ongrowth trees were nonmerchantable
(below minimum dbh) at the first inventory but of
merchantable size at the second inventory. Nongrowth
trees were above minimum dbh at the first inventory, but
grew sufficiently to be included in the second inventory.

Most FIA units have used multiple subplot horizontal point
samples (prism plots) to inventory trees larger than a
specified merchantable diameter. With this type of sample,
the probability of selecting a sample tree is proportional to
the basal area of the individual tree and depends on the
basal-area factor of the prism.

Traditional estimation procedures for total net change and
its components yielded estimates for which the two sides of
equation (1) do not agree because ongrowth and
nongrowth trees were excluded as components of growth.
Martin (1982) obtained compatible estimators by including
in ingrowth both ongrowth and nongrowth trees. Van
Deusen and others (1986) improved the compatible
estimators by rearranging Martin’s equation to include
nongrowth with survival growth. They showed that the
standard error of this new estimator of survival growth was
smaller than Martin’s traditional estimator. Also, the
estimator for ingrowth used by Van Deusen and others
cannot be negative. Roesch and others (1989) showed that
the estimation of survival growth could be improved with
additional rearrangement of some components. To
distinguish between ongrowth and nongrowth trees, these
new procedures require the estimation of previous diameter
for trees that were not measured at the initial inventory.

NEFIA unit has used several plot designs, including a 10-
point variable radius design. To obtain compatible
estimates of change with these plots, we need to estimate
previous diameter for trees measured only at time period 2.

To estimate previous diameter, NEFIA currently uses trees
measured at both inventories to develop regression
equations. The model is: 

DI = f (DBH2, TRCLS2, CRNCLS2, CRATIO2, 
CRCC2, DCR2)

(2)

where:

DI = annual diameter increment;

DBH2 = tree diameter at time period 2;

TRCLS2 = tree class at time period 2, a measure of tree
quality;

ESTIMATING PREVIOUS DIAMETER FOR INGROWTH TREES ON REMEASURED
HORIZONTAL POINT SAMPLES

Susan L. King and Stanford L. Arner 1

Abstract— The purpose of this study was to develop an improved procedure to estimate a previous diameter for ongrowth
and nongrowth trees on plots sampled by variable radius plot sampling. However, the models built can be used whenever a
previous diameter is required and the appropriate independent variables are available. Data for this study were from 1,965
remeasured forest inventory plots in the 1989 inventory of West Virginia conducted by the Northeastern Research Station’s
Forest Inventory and Analysis (NEFIA) unit. The investigation focused on three areas. First, we investigated whether
breaking the data into six groups based on the rank average diameter growth was superior to NEFIA’s procedure of
breaking the data into seventeen species groups. Second, we investigated whether basal-area increment (BAI) was
superior to diameter increment (DI) as a dependent variable. Finally, we investigated additional independent variables.
Based on the R2, mean residual, mean absolute error, and root mean square error, the best model had six species groups,
BAI as the dependent variable, and a slightly expanded set of independent variables.
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CRNCLS2 = crown class at time 2, a measure of crown
position in the canopy;

CRATIO2 = crown ratio at time 2, the proportion of a tree
with a live crown;

CRCC2 = CRATIO2/CRNCLS2;

DCR2 = DBH2 · CRATIO2.

The data are divided into seventeen species groups. For
each group, a stepwise backward elimination regression
procedure finds the functional relationship between the
dependent and independent variables. Annual DI is the
dependent variable as opposed to total increment between
inventories because the trees are remeasured at different
intervals. The procedures developed by Roesch and others
(1989) and Van Deusen and others (1986) assume that
good estimates of previous diameter for ongrowth and
nongrowth trees are possible. With the NEFIA procedure,
the R2 for each of the seventeen species groups is low,
e.g., the most recent inventory from West Virginia had R2

values ranging from 0.06 to 0.56.

PROCEDURE
The data for this study are from 1,965 remeasured forest
inventory plots in West Virginia (DiGiovanni 1990). Trees
were initially measured in 1975 and remeasured in 1988.
Only trees larger than 5 inches in diameter at both
inventories were used. The data were split into a model
data set with 8,723 observations and a validation data set
with 7,951 observations.

Using multiple linear regression, we investigated different
sets of independent variables, different species-group
compositions, and BAI as a dependent variable. Although
the explanatory variables have biological meaning with
respect to competitive position, size, and tree quality, the
model itself is not easily interpreted biologically as is the
case with models developed by Teck and Hilt (1991) and
Quicke and others (1994). However, our objective was to
find a better estimate of annual DI for trees alive at both
inventories. It was not necessary to account for ingrowth,
cut, or mortality.

Apart from the variables used by NEFIA, we investigated
additional variables reported in the literature as important in
modeling tree growth. The additional independent variables
were restricted to those measured by NEFIA and those that
could be calculated:

BA2 = total plot basal area of trees at least 5 inches in
diameter at time 2;

TPA2 = total number of trees per acre of trees at least 5
inches in diameter at time 2;

MD2 = plot medial diameter of trees at least 5 inches in
diameter at time 2;

QD2 = plot quadratic diameter of trees at least 5 inches in
diameter at time 2;

BAL2 = total basal area of trees larger than the sample
tree at time 2;

RLD2 = relative diameter; ratio of tree diameter to medial
diameter of plot, MD2;

RLQD2 = relative diameter; ratio of tree diameter to
quadratic diameter of plot, QD2.

The plot variables, BA2, TPA2, MD2, and QD2, are
expressions of site occupancy or total competition and size
of the trees on the plot. The tree variables, BAL2, RLD2,
and RLQD2, are measures of the competitive position of
the sample tree relative to other trees on the plot.

The basal area larger (BAL2) variable is used in the
potential growth times modifier type of model found in the
NC and NE-TWIGS growth simulators (Hilt and Teck 1989:
Miner and others 1988: Quicke and others 1994). Marquis
(1991) used relative diameter to model diameter growth.

Variables not considered are tree or stand age and a
measure of site productivity. NEFIA does not determine the
age of individual trees, and stand age was excluded
because many of the plots are classified as uneven-aged.
Also, experience has shown a poor relationship between
diameter growth and the site-productivity measure
determined by NEFIA.

We investigated both DI and BAI as the dependent
variable. Because of unequal number of years between
plot measurements, annual increment was modeled as:

(3)

or

(4)

where:

N = number of years between measurements on the plot;

DBH1 = tree diameter at time period 1;

DBH2 = tree diameter at time period 2;

BA1 = tree basal area at time period 1;

BA2 = tree basal area at time period 2.

The seventeen species groups used by NEFIA are based
on form class and are used in our volume equations (Scott
1979). To investigate whether another grouping of species
is more appropriate to model diameter growth, we formed
six species groups based on rank of the average diameter
growth for a species. Mean annual diameter growth ranged
from 0.068 for the lowest ranked group to 0.203 for the
highest.

RESULTS
We compared the R2 values, mean residuals, mean
absolute residuals, and root mean square errors using the
NEFIA independent variables for the total sample of both
the model and validation data sets (Table 1). The
comparison is for six procedures: 1) the stepwise
procedure on each of seventeen species groups using DI
as the dependent variable; 2) all variables for each group
using DI; 3) all variables ignoring species group using DI;
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4) all variables using six species groups and DI; 5) all
variables using seventeen species groups with BAI as the
dependent variable; and 6) all variables using six species
groups and BAI. Equation (5) and (6) give the formulas for
calculating the R2 and root mean square errors,
respectively, for the combined data.

(5)

(6)

where:

Yij = observed DI;

Y
^

ij = predicted DI;

Y
–

= overall mean DI;

ni = number of trees in group i;

g = number of species in a group, 17, 6, or 1.

The predicted value for the validation data set, Y
^

ij, was
obtained using the coefficients estimated with the model
data set.

The stepwise procedure for the seventeen species groups
offers little advantage over the nonstepwise procedure for
each group. There is little difference in any of the statistics
between these two procedures. Each of the NEFIA
independent variables was significant in several of the
groups, indicating that eliminating one or more of the
variables would be inappropriate. Yet there is an advantage
in grouping the species. All of the statistics for both the
model and validation data sets show improvement when
the data are divided into species groups. However, there is
little difference between the results using the seventeen
groups based on form class and the six groups based on
rank of mean DI. As seen in Table 1, there is a marked
improvement when BAI replaces DI as the dependent
variable. For the BAI model, all results are expressed in
reference to DI using the translation:

(7)

where:

BÂI = predicted BAI;

K = 0.005454154, a conversion factor from diameter in
inches to basal area in square feet.

All of the statistics use D
^
I(BA) as the predicted DI for the

basal-area model.

Table 2 presents a more complete analysis of the
differences between results using DI versus BAI for the

Table 1—R2s, mean residuals, mean absolute residuals, and root mean square errors (MSE) for
the stepwise procedure using NEFIA variables with three species groupings

Mean Mean abs. Root
Procedure R2 residual residual MSE

Model data set

Diameter increment
Stepwise, 17 groups 0.348 0.0 0.0530 0.0692
Nonstepwise, 17 groups 0.349 0.0 0.0529 0.0691
Nonstepwise, no groups 0.211 0.0 0.0584 0.0762
Nonstepwise, 6 groups 0.351 0.0 0.0530 0.0691

Basal-area increment
Nonstepwise, 17 groups 0.557 0.0033 0.0440 0.0571
Nonstepwise, 6 groups 0.565 0.0013 0.0436 0.0566

Validation data set

Diameter increment
Stepwise, 17 groups 0.312 0.0017 0.0544 0.0721
Nonstepwise, 17 groups 0.312 0.0017 0.0545 0.0721
Nonstepwise, no groups 0.207 0.0022 0.0585 0.0775
Nonstepwise, 6 groups 0.322 0.0005 0.0545 0.0716

Basal-area increment
Nonstepwise, 17 groups 0.536 0.0032 0.0451 0.0592
Nonstepwise, 6 groups 0.553 0.0017 0.0448 0.0582
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procedure with six-species groups. Although the bias (as
expressed by the mean residual) is slightly greater for the
BAI model, the R2, mean of absolute residuals, and root
mean square error are substantially smaller. Mean annual
diameter growth (mean DI) for each species group also is
included in Table 2.

Table 3 gives the results for different combinations of
independent variables for the six species groups. Some of
the independent variables discussed previously were
added to the NEFIA variables. The models listed are the
best 1, 2, and 3 variable combinations. The additional

variables express plot occupancy and tree competitive
position. In the remaining three models, CRCC2 and
CRNCLS2 were deleted. In each of the three models,
BAL2, RLD2, or RLQD2 was substituted for CRNCLS2.
These variables measure a tree’s competitive position
relative to the other trees on a plot.

The results for the models with variables substituted for or
added to the FIA variables are mixed. Each of the four
statistics presented in Table 3 indicate a different “best”
model. All differences are small and no model represents a
substantial improvement over the others.

Table 2—Comparison statistics for the diameter-increment and basal-area increment models for model and validation data sets

Diameter-increment model      Basal-area increment model

Species No. of Mean Mean Mean abs. Root Mean Mean abs. Root
group trees DI R2 residual residual MSE R2 residual residual MSE

Model data set

1 247 0.0681 0.045 0.0 0.0322 0.0408 0.235 0.0011 0.0288 0.0365
2 947 0.0929 0.085 0.0 0.0415 0.0525 0.315 0.0004 0.0359 0.0454
3 2489 0.1145 0.157 0.0 0.0434 0.0562 0.370 0.0012 0.0374 0.0486
4 2371 0.1434 0.201 0.0 0.0556 0.0714 0.471 0.0010 0.0452 0.0582
5 783 0.1595 0.219 0.0 0.0564 0.0720 0.473 0.0021 0.0464 0.0591
6 1876 0.2026 0.212 0.0 0.0689 0.0880 0.513 0.0022 0.0540 0.0692
All groups 8723 0.1416 0.351 0.0 0.0528 0.0691 0.565 0.0013 0.0435 0.0566

Validation data set

1 97 0.0700 0.001 0.0018 0.0337 0.0413 0.204 0.0022 0.0300 0.0369
2 616 0.0953 0.079 0.0024 0.0425 0.0546 0.315 0.0029 0.0368 0.0471
3 2417 0.1146 0.183 0.0001 0.0436 0.0557 0.392 0.0017 0.0373 0.0481
4 2448 0.1435 0.161 0.0016 0.0561 0.0732 0.450 0.0018 0.0455 0.0592
5 509 0.1662 0.115 0.0043 0.0598 0.0788 0.401 0.0027 0.0497 0.0649
6 1864 0.2030 0.201 -0.0021 0.0700 0.0898 0.514 0.0014 0.0551 0.0701
All groups 7951 0.1455 0.322 0.0005 0.0545 0.0716 0.552 0.0018 0.0447 0.0582

Table 3—Comparison statistics for models with variables substituted for or added to NEFIA variables
using six-group BAI model and model data sets

Mean Mean abs. Root
Variable R2 residual residual MSE

NEFIAa 0.565 0.0013 0.0436 0.0566
DBH2, TRCLS2, CRATIO2, DCR2, BAL2 0.575 0.0014 0.0431 0.0559
DBH2, TRCLS2, CRATIO2, DCR2, RLD2 0.562 0.0010 0.0438 0.0567
DBH2, TRCLS2, CRATIO2, DCR2, RLQD2 0.567 0.0010 0.0435 0.0564
NEFIA + BAL2 0.578 0.0016 0.0429 0.0557
NEFIA + BAL2 + BA2 0.581 0.0015 0.0428 0.0555
NEFIA + BAL2 + BA2+TPA2 0.581 0.0015 0.0428 0.0555

a NEFIA= DBH2, TRCLS2, CRNCLS2, CRATIO2, CRCC2, DCR2.
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We used the BAI model with six species groups and
NEFIA variables to determine how the model performed
over the range of tree sizes. The mean residual, mean
absolute residual, and root mean square error were
determined for 2-inch diameter classes (Table 4). As
indicated by the mean residual, for the validation data set
there is a small average over prediction for diameters less
than 9 inches and greater than or equal to 23 inches. For
the diameter classes in between there is a small
underprediction.

DISCUSSION AND CONCLUSIONS
With our method there was a marked improvement over
current NEFIA procedures in all model valuation statistics
except for the mean residual. For the validation data set,
the change in the dependent variable from annual DI to
annual BAI produced a 72 percent increase in R2, a 17
percent decrease in mean absolute residual, and an 18
percent decrease in root mean square error.

Grouping by species was better than not grouping them.
The grouping based on ranked diameter growth showed
only a slight improvement over the seventeen NEFIA form
class groups for both the DI and BAI models. Other
groupings were not investigated.

There was only a slight improvement when even the best
of the other procedures and models was used. As a result,
there seems little reason to find a “best” set of independent
variables for each group using a stepwise procedure as the
outcome using all variables for all groups is essentially the
same.

The variables considered as substitutions for or additions
to the NEFIA variables produced little improvement.
Approximately the same results could be obtained using
any of the different combinations of NEFIA and the other
plot and tree variables considered here.

Quicke and others (1994) developed a biologically
interpretable model using a function with potential growth
multiplied by a growth modifier for a single species with
plots chosen for specified characteristics. For this study,
trees are located on plots chosen at random from a wide
range of forest conditions. Disturbance on the plot was
not taken into account. There were 78 species and a
wide range in size. The results presented here closely
approximate those obtained by Quicke and others
(1994).

Data used by Teck and Hilt (1991) are from the same type
of unstructured design as those presented in this study.
They also developed and used a biologically interpretable
DI model. With their validation data set, the overall mean
prediction error was 0.013 and the root mean square error
was 0.085. These statistics are substantially higher than
ours.

The coefficients of the models developed here can be used
for purposes other than that of NEFIA if the independent
variables included in the model are measured. Table 5
contains coefficients for the six-species-group BAI model
using NEFIA variables plus BAL2. Table 6 lists the tree
species assigned to each of six species groups.

The coefficients developed from this study should be
applied to other regions with caution.

Table 4—Comparison statistics by diameter class for six-group basal-area increment model

Model data set     Validation data set

Dbh No. of Mean Mean Mean abs. Root No. of Mean Mean Mean abs. Root
class trees DI Residual residual MSE trees DI residual residual MSE

In.

5 - 6.9 529 0.0573 -0.0043 0.0231 0.0293 490 0.0565 -0.0034 0.0230 0.0289
7 - 8.9 1353 0.0930 -0.0018 0.0313 0.0394 1136 0.0965 -0.0010 0.0323 0.0398
9 - 10.9 1371 0.1246 0.0025 0.0412 0.0518 1202 0.1259 0.0028 0.0401 0.0508
11 - 12.9 1316 0.1401 0.0011 0.0458 0.0577 1179 0.1466 0.0042 0.0454 0.0592
13 - 14.9 1250 0.1587 0.0049 0.0468 0.0614 1087 0.1576 0.0026 0.0487 0.0636
15 - 16.9 946 0.1676 0.0008 0.0483 0.0615 918 0.1741 0.0046 0.0506 0.0651
17 - 18.9 702 0.1787 0.0027 0.0532 0.0680 643 0.1901 0.0089 0.0543 0.0696
19 - 20.9 470 0.1903 0.0064 0.0532 0.0686 480 0.1845 0.0006 0.0564 0.0719
21 - 22.9 296 0.1909 0.0007 0.0554 0.0711 263 0.1882 0.0003 0.0525 0.0665
23 - 24.9 180 0.2018 0.0056 0.0532 0.0698 222 0.1921 -0.0044 0.0580 0.0709
> 25 310 0.1913 -0.0044 0.0499 0.0614 331 0.1851 -0.0103 0.0532 0.0641

All trees 8723 0.1416 0.0013 0.0436 0.0566 7951 0.1455 0.0017 0.0448 0.0582
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Table 5—Regression coefficients for six-group basal-area increment model using NEFIA variables and BAL2

Species
group Intercept DBH2 TRCLS2 CRATIO2 CRNCLS2 DCR2 CRCC2 BAL2

1 0.00107 0.00065 0.00011 0.00028 -0.00043 0.00005 -0.00059 -0.000014
2 0.01448 0.00028 -0.00127 0.00053 -0.00225 0.00020 -0.00367 -0.000033
3 0.02058 0.00064 -0.00309 -0.00115 -0.00272 0.00025 -0.00301 -0.000042
4 0.02239 0.00048 -0.00104 -0.00159 -0.00365 0.00041 -0.00486 -0.000048
5 -0.00150 0.00160 -0.00132 -0.00306 0.00041 0.00021 0.00582 -0.000055
6 0.00132 0.00214 -0.00405 -0.00458 0.00219 0.00016 0.00957 -0.000110

Species
group Common name Scientific name

1 Hawthorn Crataegus sp.
Shortleaf pine Pinus echinata
Flowering dogwood Cornus flordia
European alder Alnus glutinosa
Table mountain pine Pinus pungens
Black willow Salix nigra
Chinkapin oak Quercus muehlenbergii
Eastern hophornbeam Ostrya virginiana
Silver maple Acer saccharinum
Blackgum Nyssa sylvatica
Willow oak Quercus phellos
Sourwood Oxydendrum arboreum

2 Maple sp. Acer sp.
Quaking aspen Populus tremuloides
Pitch pine Pinus rigida
Overcup oak Quercus lyrata
Post oak Quercus stellata
Red spruce Picea rubens
Pin cherry Prunus pennsylvanica
Am. hornbeam, Carpinus caroliniana

Musclewood
Osage-orange Maclura pomifera
River birch Betula nigra
Yellow birch Betula alleghaniensis
Basswood sp. Tilia sp.
Black walnut Juglans nigra
Virginia pine Pinus virginiana
Mockernut hickory Carya tomentosa
Sweet birch Betula lenta
Common persimmon Diospyros virginiana

3 Bur oak Quercus macrocarpa
Ohio buckeye Aesculus glabra
Pignut hickory Carya glabra
Hickory sp. Carya sp.
American beech Fagus grandifolia
Magnolia sp. Magnolia sp.
Chokecherry Prunus virginiana
Buckeye, Aesculus sp.

Horsechestnut
Chestnut oak Quercus prinus

Species
group Common name Scientific name

Sassafras Sassafras albidum
White basswood Tilia heterophylla
Shagbark hickory Carya ovata
Black locust Robinia pseudoacacia

4 Hackberry Celtis occidentalis
White oak Quercus alba
Apple sp. Malus sp.
Eastern hemlock Tsuga canadensis
Bitternut hickory Carya cordiformis
Yellow buckeye Aesculus octandra
Slippery elm Ulmus rubra
Swamp white oak Quercus bicolor
Cucumbertree Magnolia acuminata
American basswood Tilia americana
Red maple Acer rubrum
American elm Ulmus americana
Sugar maple Acer saccharum
Shellbark hickory Carya laciniosa
Striped maple Acer pennsylvanicum
Eastern red-cedar Juniperus virginiana

5 Black oak Quercus velutina
White ash Fraxinus americana
Butternut Juglans cinerea
Elm sp. Ulmus sp.
Sycamore Platanus occidentallis
Green ash Franxinus pennsylvanica
Boxelder Acer negundo
Black cherry Prunus serotina
Eastern white pine Pinus strobus
Scarlet oak Quercus coccinea

6 Northern red oak Quercus rubra
Bigtooth aspen Populus grandidentata
Yellow-poplar Liriodendron tulipifera
Pin oak Quercus palustris
Prunus sp. Prunus sp.
Ailanthus Ailanthus altissima
Black maple Acer nigrum
Eastern redbud Cercis canadensis
Southern red oak Quercus falcata v.

falcata

Table 6—Tree species assigned to one of six species groups based on rank of mean diameter increment
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INTRODUCTION
The goal of a neural network is to mathematically model
the brain and to capture its pattern recognition capabilities.
Humans are more efficient at processing pattern
information such as speech and visual images than any
machine, whereas computers are extremely fast at
processing information that can be formulated into a
sequence of instructions.

A neural network may provide a superior solution over a
traditional statistical approach for certain classes of
problems (Burke, 1991). These classes include problems in
which the distributions are unknown and possibly nonlinear,
where outliers may exist, and where noise is present in the
data. These are common conditions in forest inventory data.
This paper investigates whether neural networks provide
improved estimates over the traditional statistical modeling
procedure of multiple linear regression for estimating
diameter of a tree at an earlier time period.

In multiple linear regression, the relationship between
independent and dependent variables is assumed to be
linear and interactions among the independent variables
must be specified in advance by the user. In neural
networks, there is no assumed relationship between the
independent and dependent variables. The relationship
between independent and dependent variables and the
interactions among the independent variables are learned
through an iterative process. Neural networks require no
assumptions about the distributions, mean, or correlation of
the errors.

PROBLEM
The Northeastern Forest Inventory and Analysis (NEFIA)
unit of the USDA Forest Service currently uses trees

measured at current and previous inventories to develop
multiple linear regression equations to estimate previous
diameter for those trees not recorded at the previous
inventory. The impetus for this study was to develop an
improved procedure to estimate a previous diameter for
ongrowth and nongrowth trees on plots sampled by
variable radius plot sampling. However, the models built
can be used whenever a previous diameter is required and
the appropriate dependent variables are available. For
West Virginia, King and Arner (1998) developed a new
procedure to estimate a previous diameter. They used six
groupings based on the rank of the average diameter
growth for a species. Also in their study, many different
independent variables and combinations of independent
variables were evaluated. To investigate whether neural
networks can provide a better estimate of previous
diameter, the best models from the King and Arner study
were selected for comparison.

DATA
The data for this project came from 1,965 remeasured forest
inventory plots in West Virginia. The trees were initially
measured in 1975 and then remeasured in 1988. Only trees
larger than 5 inches in diameter at both time periods were
included. The data were randomly split into a model building
data set with 8,723 observations and a validation data set
with 7,951 observations. Before splitting the data, they were
grouped into six species groups. There were two sets of
independent variables chosen for comparison. The first set
of variables are those currently used by NEFIA to estimate
the previous diameter. These variables are:

DBH2 = tree diameter at time period 2;

TRCLS2 = tree class at time period 2, a measure of tree
quality;
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NEURAL NETWORKS VS. MULTIPLE LINEAR REGRESSION 
FOR ESTIMATING PREVIOUS DIAMETER
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Abstract— A neural network is a nonparametric statistical modeling procedure known for its capacity to process nonlinear
relationships. For estimating the previous diameter of a tree, the exact functional relationship between the response variable
and the independent variables is unknown. The relationship is most likely nonlinear. Multiple linear regression was used to
develop a model for estimating the previous diameter of trees in West Virginia. The data were split into a model data set with
8,723 observations and a validation data set with 7,951 observations. The dependent variable was either basal-area
increment or diameter increment. Two different sets of independent variables were evaluated. The data were divided into six
species groups based on the rank of the average diameter growth of the species. Basal-area increment was a superior
dependent variable for the multiple linear regression model. Basal-area increment is a nonlinear transformation of the
diameter increment. It was thought that neural networks with its capacity to capture nonlinear relationships might provide an
equivalent or superior solution with the diameter increment response variable as opposed to the basal-area increment
response variable. All of the basal-area increment models had a higher R2 than their diameter increment counterparts.
Neither technique was superior in all cases. Other issues such as the stopping criteria, initial weight selection, the optimal
number of hidden nodes, and the optimal number of hidden layers in a neural network are also discussed.
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CRNCLS2 = crown class at time 2, a measure of crown
position in the canopy;

CRATIO2 = crown ratio at time 2, the proportion of a tree
with a live crown;

CRCC2 = CRATIO2 / CRNCLS2;

DCR2 = DBH2 • CRATIO.

The analysis by King and Arner showed that the addition of
the variable BAL2 improved the results. BAL2 is the sum of
the basal areas of the trees on a plot larger than the
subject tree. It is a measure of the competition for light.
The addition of the variable BAL2 to the first set of
independent variables formed the second set of
independent variables. Two response variables were
investigated: diameter increment (DI) and basal area
increment (BAI). 

(1)

or
(2)

where:

N = number of years between measurements on the plot;

DBH1 = tree diameter at time period 1;

DBH2 = tree diameter at time period 2;

K = 0.005454154, a conversion factor from diameter in
inches to basal area in square feet.

Annual increment was used to account for variation in the
measurement period among the plots. Basal area and dbh
are related by a transformation. Logic would suggest that
BAI would be a better response variable than DI. There is
not a one-to-one mapping between DI and BAI. A
poletimber and a sawtimber tree may have the same DI,
but different diameters at both measurement periods. BAI
captures the differences in the size of the trees. Thus, 24
models were compared for both multiple linear regression
and neural networks.

NEURAL NETWORKS
The type of a neural network chosen for this study is a
feedforward backward propagation network (Figure 1). The
network consists of three layers: the input layer, hidden
layer, and output layer. The layers consist of processing
units called nodes. Arcs connect the layers. Each arc has a
weight which represents the strength of the connection.
The goal of a neural network is to find the best estimate of
the weights.

In the input layer, the number of nodes corresponds to the
number of independent variables. In the hidden layer, not
only is the number of nodes variable, but also there may be
more than one hidden layer. Only one hidden layer is
shown in Figure 1. In general, only one hidden layer is
required. The third layer is the output layer. The number of
nodes in this layer corresponds to the number of

dependent variables. A backpropagation network has no
cycles. All of the arcs move from left to right.

Each observation in the data set forms an input pattern, p.
An observation is called an exemplar in neural networks. A
linear combination of the input patterns and the weights is
formed at each hidden node. This defines a plane in N - 1
dimensional space, where N is the number of input nodes.
The hyperplane passes through the origin unless a bias
weight is added to the hidden node. Mathematically, this
process is represented as:

for j=1,...,J (3)

where:

wj = the bias term for hidden unit j;

wij = the weight from input node i to hidden node j;

xp
i = ith component of the pth exemplar;

I = number of input nodes;

J = number of hidden nodes.

By creating a dummy node with a fixed input value of 1 or 
-1, the bias can be written as a weight, wI+1,j. Thus,
equation (3) becomes:

for j=1,...,J. (4)

A squashing or activation function is applied to netpj at each
hidden node j. This function introduces nonlinearities into
the network. Common squashing functions are the logistic
and hyperbolic tangent function. Applying the squashing
function to netpj yields:

for j=1,...,J. (5)

The output from each of the j nodes at the hidden layer
becomes the input to the k output nodes.

A linear combination of the output from the hidden nodes
and the weights, vjk, is formed. As before, a bias term is
added. Mathematically, this may be expressed as:

for k=1,...,K (6)

where:

vjk = the weight from hidden node j to output node k.

A squashing function is applied to netpk to obtain the
predicted output:

for k=1,...,K. (7)

Backpropagation is a supervised procedure. That is, it
requires an observed dependent variable, tpk. The estimated
value, op

k, is compared with tpk, to determine if they are
close. One measure of closeness is the sum of the
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squared differences between tpk and op
k. It is used frequently

because the derivatives are easy to compute. Thus, the
objective function is:

(8)

The objective function for neural networks in equation (8)
appears to be similar to that in multiple linear regression.
Both techniques minimize the sum of the squared
differences between the observed and the predicted
values. The variables in both procedures are the weights.
However, the two procedures are quite different. The
predicted values are different functions of the weights. The
number of weights in multiple linear regression depends on
the number of input variables, whereas the number of
weights in neural networks depends on the number of:
input variables, hidden nodes, hidden layers, and output
nodes. The objective function in both the neural network
and multiple linear regression is an unconstrained
minimization problem. The special structure in the multiple
linear regression problem allows for the optimal set of
weights to be found through solving a system of normal

equations. Iterative techniques are used to find the optimal
set of weights for a neural network. Each iteration is
considered a training period. By updating the weights, the
neural network is said to be learning.

Many techniques are available for solving unconstrained
minimization problems. These techniques include gradient
descent, the quasi-Newton techniques of conjugate
gradients and Davidon-Fletcher-Powell, the modified
Newton technique of Levenberg and Marquardt, stiff
differential equations, genetic optimization, and simulated
annealing. Historically, gradient descent has been applied
by the neural network community to solve equation (8). In
fact the name backpropagation refers to the process of
applying the chain rule of calculus to compute the error
gradient for each weight in the network. The error gradient
is used in updating the weights in gradient descent. The
error is said to be propagated backwards. Gradient descent
may be advantageous if the problem is implemented on a
parallel computer. However, most problems are
implemented on a serial computer, and gradient descent on
these machines has been abandoned by the optimization
community in favor of more sophisticated techniques. The
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Figure 1—Backpropagation network. The network is fully connected. There is an arc from every node to a node in the next layer.



difficulties of gradient descent are well documented. Sarle
(1994), Masters (1995), Bishop (1995), and Bazarra,
Sherali and Shetty (1993) all discuss the limitations of
gradient descent and are excellent references on the
conjugate gradient method, the Davidon-Fletcher-Powell,
and the Levenberg-Marquardt algorithm. Kollias and
Anastassiou (1988) discuss applying the Levenberg-
Marquardt algorithm to neural networks. Owens and Filken
(1989) saw the similarity between a system of stiff
differential equations and the gradient descent approach.
They claim that stiff differential equations provide a more
rapid and accurate convergence than either gradient
descent or conjugate gradient methods. Hassoun (1995)
provides an introduction to simulated annealing and genetic
optimization for neural networks. Masters (1995) is another
good introductory reference for simulated annealing in
neural networks. Another text by Masters (1993) provides
introductory material on both topics. 

In selecting the technique to solve equation (8), the number
of weights must be taken into account. Sarle (1994)
recommends using the Levenberg-Marquardt algorithm for
networks with tens of weights, the Davidon-Fletcher-Powell
algorithm for networks with hundreds of weights, and the
conjugate gradient procedure for large problems with
thousands of weights. Most of the 24 subproblems were
solved using the Levenberg-Marquardt algorithm. These
subproblems had only tens of weights. The other two
techniques were tried on a few subproblems, but the value
of their objective functions was larger. Gradient descent
was also tried on several of the subproblems. It proved to
be a superior technique for only the response variable DI in
the first subgroup. The gradient descent algorithm was
user written in SAS/IML(SAS Institute Inc., 1989). The
other three algorithms are part of PROC NLP (SAS
Institute Inc., 1997) in SAS/OR. SAS had a Beta release
macro that was available in Release 6.10. This macro was
modified and used in this study. Updated SAS neural
network macros with a GUI interface are now part of the
SAS Data Mining Solution.

Several other issues relating to the implementation of the
neural network need to be discussed. First, the activation
function must be selected. The purpose of an activation
function is to induce nonlinearity into the network through a
nonlinear transformation. With a linear function, the output
is a weighted sum of the inputs. A squashing function is an
activation function that maps any real input into a bounded
range, usually between 0 and 1 or between -1 and 1. The
two most common squashing functions are the logistic
function and the hyperbolic tangent function. Other
functions may be used so long as they are differentiable.
Smooth activation functions decrease the training time.
Kalman and Kwasny (1992) argue that the hyperbolic
tangent function was the best of the sigmoidal functions.
Bishop (1995) states that the hyperbolic tangent function
often increases algorithm convergence over a logistic
function. The choice of an activation function may be
different at the output node. The range of the activation
function at the output node should correspond to the range
of the dependent variable. A categorical dependent
variable would have a different activation function than a

continuous output variable. The output data for the
diameter increment problem were scaled. The hyperbolic
tangent function was used at both the hidden and output
layers. The logistic function was tried on some of the
subproblems and it did not provide a superior solution.

Second, there are two different philosophies concerning the
scaling of the independent and dependent variables. Some
believe that it is not necessary to scale the independent or
dependent variables. The size of the weights will make any
necessary adjustments. In the diameter increment problem,
the input and output variables were scaled to values that
correspond to the range of the squashing function.
Because the hyperbolic tangent function is used as the
squashing function, the continuous variables are scaled
between -0.9 and 0.9. The endpoints, -1 and 1, in the
range are not used because they correspond to the inputs 
-∞ and +∞, respectively. The class variables are first
broken into indicator variables and then scaled like the
continuous variables. The lowest value of the indicator
variable corresponds to -0.9 and the largest value
corresponds to 0.9.

Third, the selection of the initial weights is a major issue.
None of these techniques guarantee a global minimum.
The choice of initial weights can influence the quality of a
local solution. The initial weights in this project were
selected by random numbers. There are many heuristic
procedures for selecting the initial weights. One procedure
by Piovoso and Owens (1991) was tried on several
subproblems. In this procedure, the weights between the
input layer and the hidden layer are found by principal
component analysis. The weights between the hidden layer
and the output layer are found by multiple linear
regression. In this project, after trying several different
seeds, a random number generator always provided a set
of weights that found a lower value to the objective function
than the Piovoso and Owens procedure.

Fourth, the number of layers must be selected. Hornik,
Stinchcombe, and White (1989) showed that a neural
network with one hidden layer and an arbitrary squashing
function can approximate most functions. In practice, the
need for a second hidden layer occurs when a piecewise-
continuous function must be approximated. This condition
is not present in the diameter or basal-area growth
problem, so only one hidden layer was used.

Fifth, there are no equations or formulas for selecting the
optimal number of hidden nodes. Each situation is different.
Too many hidden units cause an inability to generalize and
the data are overfitted. Similarly, too few hidden nodes will
cause an underfitting of the data. An underfitted or an
overfitted model does not generalize well, that is, predict
accurate dependent or output variables from a new set of
independent or input variables. One way to control
generalization is through the selection of the number of
hidden units and their connections. This is model selection.
The simplest model selection technique is to determine the
optimal number of hidden nodes through experimentation.
Starting with one or two nodes, a solution is found. Another
node is added and the problem is reoptimized. This
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process is repeated until the objective function value
begins to increase. The number of hidden nodes
corresponding to the minimal objective function value is
optimal. This procedure was used in the diameter
increment model. In most of the 24 problems, two hidden
nodes were optimal. An alternative is to start with a large
number of hidden nodes and gradually remove complete
hidden units or only remove selected connections. This is
pruning. Reed (1993) describes several pruning
procedures.

Sixth, in any iterative algorithm, a major issue is when to
stop. The error in the model data set monatonically
decreases as a function of the iteration number. The error
in the validation data set decreases and then increases as
the neural network starts to overfit. The algorithm is
terminated when the validation data set reaches its
minimum. This procedure is called stopped training.
Regularization procedures such as stopped training
improve generalization by controlling the size of the
weights. Other regularization procedures such as weight
decay, training with noise, and Bayesian estimation are
described by Bishop (1995). Stopped training was used in
this project.

COMPARISON STATISTICS
The statistics used to compare multiple linear regression
with neural networks for both the model and the validation
data set are R2, the mean of the squared errors (MSE), the
mean of the absolute errors (MAE), and the mean of the
arithmetic errors (ME). The ME indicates bias, whereas the
MSE and the MAE both indicate precision as well as bias.
The MAE is more robust and less sensitive to outliers than
the MSE.

RESULTS AND DISCUSSION
A comparison of the results between neural networks and
multiple linear regression for the ranked mean species
groups is presented in Tables 1 and 2. The overall results
were obtained by combining the response values and the
predicted response values for each of the six species
groups and forming one group. The appropriate statistics
are then calculated. Because the goal of a model is
generalization, the results for the validation data set are
more important than those for the model data set.

For the BAI models, all of the results are expressed as DI
using the translation:

(9)

where:

BA1 = tree basal area at time period 1, K • DBH12;

BÂI = predicted basal-area increment;

N = number of years between measurements of the tree;

All of the statistics use D^I(BA) as the predicted diameter
increment for the basal-area models.

From the overall results for the response variable DI,
neural networks was superior. It had a slightly higher R2, a
slightly lower MAE, and a slightly lower MSE. For the
individual species groups for the response variable DI,
neural networks was superior for the NEFIA variables, but
the results were mixed for addition of BAL2. Still, neural
networks predominates. The ME was larger for the neural
network model as expected. An assumption of multiple
linear regression is that the expected value of the errors is
zero. Neural networks, on the other hand, is a
nonparametric procedure and the mean of the arithmetic
error will not necessarily be zero. The addition of the
variable BAL2 improved the results for both neural
networks and multiple linear regression. For the response
variable BAI, multiple linear regression more frequently
provided a superior solution than neural networks as
indicated by the R2, MAE, and MSE.

The software used in this study was the first beta version of
SAS’s neural network macros. Later beta versions were
significantly enhanced. A subset of the 24 subproblems
was selected to access the impact of the new software on
the diameter increment prediction problem. The subset had
BAI as the response variable and NEFIA + BAL2 as the
independent variables. Neural networks had the most
difficulty with this subset. The results are in Table 3. With
the new macros, neural networks is the winner for the
model data set. The R2 is higher for all species groups, and
the MAE and MSE are lower for most of the species
groups. However, the new macros did not improve the
results for the validation data set. Only the three smallest
species groups have a higher R2 and a lower MAE in the
validation data set as compared with the results in Table 2.
Neural networks performed slightly worse for the third and
sixth species groups. The new macros did not significantly
alter the results; and so, it was decided not to pursue
modeling the remaining subgroups. Also other independent
variables from the King and Arner (1998) study were tried
on this subset of the 24 problems. They did not improve
the results.

Neural networks does not always outperform multiple linear
regression. This conclusion was also reached by Desai and
Bharati (1998). They found that for predicting excess
returns on large stocks, neural networks outperformed
multiple linear regression in periods of high volatility.
Otherwise, multiple linear regression was superior. These
results parallel a study by Markham and Rakes (1998).
Using computer generated data, Markam and Rakes
conclude that there is a significant interaction between
sample size and variance. Multiple linear regression
performs better for low-variance problems and neural
networks performs better for high-variance problems. The
results are mixed and dependent on sample size for
medium-variance problems. Neural networks was superior
for large sample sizes, and multiple linear regression was
superior for small sample sizes. One explanation of why
neural networks did not outperform multiple linear
regression in this project is that there is not enough
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variability in the data. Another explanation is that the
relationship between BAI and the independent variables is
linear. In this situation, a neural network can not outperform
a linear model.

CONCLUSIONS
Neither neural networks nor the multiple linear regression
significantly outperformed the other technique. Neural
networks followed the same trend as multiple linear
regression. All of the statistics indicate significant
improvement by using the response variable BAI instead of
DI. The addition of the variable BAL2 also improved slightly

both models as indicated by the statistics. King and Arner
(1998) found that the addition or substitution of other
variables had little impact on the model.

There is contradictory information in books and journals on
neural networks. There is no consensus on the selection of
the initial weights, model selection, regularization, and
scaling of input and output variables. An effort has been
made to try new architectures on a subset of the 24 models
as they become available in SAS.
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Table 1—Comparison statistics for neural networks and mutiple linear regression for NEFIA variables

Sub- No. of
group trees NN REG NN REG NN REG NN REG

----------R2----------    ----------ME----------     --------MAE--------    ---------MSE---------

DI response variable and model data set

1 257 0.0463 0.0449 -0.0051 0.0000 0.0334 0.0322 0.0017 0.0017
2 947 0.1099 0.0846 0.0004 0.0000 0.0409 0.0415 0.0027 0.0028
3 2489 0.1649 0.1568 0.0016 0.0000 0.0430 0.0434 0.0031 0.0032
4 2371 0.2359 0.2011 0.0019 0.0000 0.0541 0.0556 0.0049 0.0051
5 783 0.2449 0.2193 0.0004 0.0000 0.0557 0.0564 0.0050 0.0052
6 1876 0.2440 0.2116 0.0050 0.0000 0.0664 0.0689 0.0074 0.0077
All 8723 0.3731 0.3512 0.0020 0.0000 0.0517 0.0528 0.0046 0.0048

DI response variable and validation data set

1 97 0.0256 0.0011 -0.0020 0.0018 0.0335 0.0336 0.0017 0.0017
2 616 0.1106 0.0787 0.0011 0.0024 0.0419 0.0425 0.0029 0.0030
3 2417 0.1973 0.1832 0.0034 0.0001 0.0436 0.0436 0.0031 0.0031
4 2448 0.2262 0.1606 0.0013 0.0016 0.0544 0.0561 0.0049 0.0054
5 509 0.1184 0.1148 0.0105 0.0043 0.0620 0.0598 0.0062 0.0062
6 1864 0.2334 0.2015 0.0044 -0.0021 0.0686 0.0700 0.0077 0.0081
All 7951 0.3521 0.3216 0.0032 0.0005 0.0537 0.0545 0.0049 0.0051

BAI response variable and model data set

1 257 0.2481 0.2349 -0.0011 0.0011 0.0293 0.0288 0.0013 0.0013
2 947 0.2806 0.3155 0.0029 0.0004 0.0366 0.0359 0.0022 0.0021
3 2489 0.4005 0.3704 -0.0003 0.0012 0.0366 0.0374 0.0022 0.0024
4 2371 0.4679 0.4706 0.0007 0.0010 0.0456 0.0452 0.0034 0.0034
5 783 0.4371 0.4734 -0.0044 0.0021 0.0491 0.0464 0.0037 0.0035
6 1876 0.4353 0.5127 -0.0181 0.0022 0.0607 0.0540 0.0055 0.0048
All 8723 0.5418 0.5647 -0.0039 0.0013 0.0451 0.0435 0.0034 0.0032

BAI response variable and validation data set

1 97 0.1311 0.2036 0.0097 0.0022 0.0301 0.0300 0.0015 0.0014
2 616 0.3248 0.3153 -0.0043 0.0029 0.0374 0.0368 0.0022 0.0022
3 2417 0.3848 0.3921 0.0036 0.0168 0.0373 0.0373 0.0023 0.0023
4 2448 0.4539 0.4495 0.0018 0.0018 0.0455 0.0455 0.0035 0.0035
5 509 0.3751 0.4008 0.0051 0.0027 0.0508 0.0497 0.0044 0.0042
6 1864 0.4221 0.5143 0.0110 0.0014 0.0594 0.0551 0.0058 0.0049
All 7951 0.5222 0.5518 0.0044 0.0018 0.0458 0.0447 0.0036 0.0034



This work represents another step in evaluating the power
of neural networks. Finding a ‘good’ set of initial weights
can be a time consuming process, and some thought must

be given to the frequency of use and the required
precision of the final model before abandoning traditional
techniques.
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Table 2—Comparison statistics for neural networks and multiple linear regression for NEFIA
variables + BAL2

Sub- No. of
group trees NN REG NN REG NN REG NN REG

----------R2----------    ----------ME----------     --------MAE--------    ---------MSE---------

DI response variable and model data set

1 257 0.0702 0.0671 -0.0003 0.0000 0.0323 0.0324 0.0016 0.0016
2 947 0.1476 0.1200 0.0002 0.0000 0.0397 0.0405 0.0026 0.0026
3 2489 0.1933 0.1925 0.0044 0.0000 0.0419 0.0425 0.0030 0.0030
4 2371 0.2649 0.2311 0.0011 0.0000 0.0529 0.0548 0.0469 0.0049
5 783 0.2696 0.2628 -0.0026 0.0000 0.0553 0.0550 0.0048 0.0049
6 1876 0.3198 0.2882 0.0017 0.0000 0.0628 0.0652 0.0067 0.0070
All 8723 0.4097 0.3907 0.0017 0.0000 0.0501 0.0513 0.0043 0.0045

DI response variable and validation data set

1 97 0.0357 0.0515 0.0012 0.0014 0.0334 0.0330 0.0016 0.0016
2 616 0.1355 0.1231 0.0030 0.0010 0.0412 0.0413 0.0028 0.0028
3 2417 0.2076 0.2186 0.0092 -0.0001 0.0436 0.0426 0.0030 0.0030
4 2448 0.2241 0.1964 0.0015 0.0009 0.0547 0.0552 0.0049 0.0051
5 509 0.1578 0.1590 0.0064 0.0023 0.0594 0.0585 0.0059 0.0059
6 1864 0.2895 0.2672 0.0063 -0.0008 0.0664 0.0671 0.0072 0.0074
All 7951 0.3739 0.3612 0.0054 0.0003 0.0531 0.0530 0.0047 0.0048

BAI response variable and model data set

1 257 0.2426 0.2549 -0.0037 0.0012 0.0300 0.0287 0.0013 0.0013
2 947 0.3350 0.3391 0.0020 0.0005 0.0351 0.0352 0.0020 0.0020
3 2489 0.4005 0.3876 -0.0003 0.0013 0.0366 0.0369 0.0022 0.0023
4 2371 0.4811 0.4782 0.0006 0.0012 0.0451 0.0452 0.0033 0.0033
5 783 0.4895 0.4914 0.0005 0.0023 0.0457 0.0455 0.0034 0.0034
6 1876 0.5282 0.5355 -0.0120 0.0027 0.0548 0.0528 0.0046 0.0046
All 8723 0.5782 0.5782 -0.0023 0.0016 0.0433 0.0429 0.0031 0.0031

BAI response variable and validation data set

1 97 0.1623 0.2342 0.0093 0.0018 0.0296 0.0296 0.0014 0.0013
2 616 0.3599 0.3449 -0.0012 0.0016 0.0357 0.0359 0.0021 0.0021
3 2417 0.3848 0.4048 0.0036 0.0018 0.0373 0.0372 0.0023 0.0023
4 2448 0.4658 0.4619 0.0003 0.0013 0.0454 0.0454 0.0034 0.0034
5 509 0.4098 0.4161 0.0033 0.0019 0.0495 0.0494 0.0041 0.0041
6 1864 0.4655 0.5294 0.0171 0.0026 0.0566 0.0546 0.0054 0.0048
All 7951 0.5416 0.5634 0.0054 0.0019 0.0449 0.0444 0.0035 0.0033
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Table 3—Comparison statistics for neural networks and multiple linear regression for DEFIA + BAL2
variables using an updated version of SAS macros

Sub- No. of
group trees NN REG NN REG NN REG NN REG

----------R2----------    ----------ME----------     --------MAE--------    ---------MSE---------

BAI response variable and response data set

1 257 0.4828 0.2549 0.0010 0.0012 0.0229 0.0287 0.0009 0.0013
2 947 0.4104 0.3391 0.0022 0.0005 0.0330 0.0352 0.0018 0.0020
3 2489 0.4022 0.3876 0.0013 0.0013 0.0363 0.0369 0.0022 0.0023
4 2371 0.5030 0.4782 0.0018 0.0012 0.0436 0.0452 0.0032 0.0033
5 783 0.4932 0.4914 -0.0005 0.0023 0.0459 0.0455 0.0034 0.0034
6 1876 0.5634 0.5355 -0.0012 0.0027 0.0513 0.0528 0.0043 0.0046
All 8723 0.5991 0.5782 0.0008 0.0016 0.0416 0.0429 0.0029 0.0031

BAI response variable and validation data set

1 97 0.1964 0.2342 0.0094 0.0018 0.0278 0.0296 0.0014 0.0013
2 616 0.3665 0.3449 0.0030 0.0016 0.0349 0.0359 0.0021 0.0021
3 2417 0.3813 0.4048 0.0013 0.0018 0.0378 0.0372 0.0024 0.0023
4 2448 0.4659 0.4619 -0.0013 0.0013 0.0451 0.0454 0.0034 0.0034
5 509 0.4121 0.4161 0.0007 0.0019 0.0495 0.0494 0.0041 0.0041
6 1864 0.4619 0.5294 0.0247 0.0026 0.0555 0.0546 0.0054 0.0048
All 7951 0.5403 0.5634 0.0062 0.0019 0.0446 0.0444 0.0035 0.0033


